Magnetars: Time Evolution, Superfluid Properties, and Mechanism of Magnetic Field Decay

نویسندگان

  • P. Arras
  • A. Cumming
  • C. Thompson
چکیده

We calculate the coupled thermal evolution and magnetic field decay in relativistic model neutron stars threaded by superstrong magnetic fields (B > 10 G). Our main goal is to evaluate how such “magnetars” evolve with time and how field decay modifies the transitions to core superfluidity and cooling dominated by surface X-ray emission. Observations of a thermal X-ray spectral component and fast timing noise place strong constraints on the presence of a superfluid core. We find that the transition to core superfluidity can be significantly delayed by field decay in the age range ∼ 10 − 10 yrs. The mechanism of Hall drift is related to the stability of the core magnetic field, and to currents flowing outward through the crust. The heating effect is enhanced if it is continuous rather than spasmodic. Condensation of a heavy element layer at the surface is shown to cause only modest changes in the outward conduction of heat. Subject headings: magnetic fields: stars – neutron stars: general

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How Common Are Magnetars? The Consequences of Magnetic-Field Decay

Ultramagnetized neutron stars or magnetars have been invoked to explain several astrophysical phenomena. We examine how the magnetic field of a magnetar will decay over time and how this decay affects the cooling of the object. We find that for sufficiently strong nascent fields, field decay alters the cooling evolution significantly relative to similarly magnetized neutron stars with constant ...

متن کامل

Restrictions on parameters of power - law magnetic field decay for accreting isolated neutron stars

In this short note we discuss the influence of power-law magnetic field decay on the evolution of old accreting isolated neutron stars. We show, that, contrary to exponential field decay (Popov & Prokhorov 2000), no additional restrictions can be made for the parameters of power-law decay from the statistics of isolated neutron star candidates in ROSAT observations. We also briefly discuss the ...

متن کامل

Different‎ Magnetic Field ‎Distributions‎ in Deformed Neutron Stars‎

‎In this work, we review the formalism which would allow us to model magnetically deformed neutron stars. We study the effect of different magnetic field configurations on the equation of state (EoS) and ‎the ‎structure of such stars. ‎For this aim‎, the EoS of magnetars is acquired by using the lowest order constraint variational (LOCV) method ‎‎and ‎employing‎ the AV18 potential‎.‎...

متن کامل

Constraining parameters of magnetic field decay for accreting isolated neutron stars

The influence of exponential magnetic field decay (MFD) on the spin evolution of isolated neutron stars is studied. The ROSAT observations of several X-ray sources, which can be accreting old isolated neutron stars, are used to constrain the exponential and power-law decay parameters. We show that for the exponential decay the ranges of minimum value of magnetic moment, μb, and the characterist...

متن کامل

Magneto–rotational and Thermal Evolution of Magnetars with Crustal Magnetic Fields

The interpretation of Soft–Gamma–Repeaters (SGRs) and Anomalous X–Ray Pulsars (AXPs) as Magnetars (Thompson & Duncan 1996) raises again the issue of the generation of the ultra–strong magnetic fields (MFs) in neutron stars (NSs) and the related question of where these fields are anchored: in the core, penetrating the whole star, or confined to the crust. Recently, Heyl & Kulkarni (1998) conside...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004